Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate
نویسندگان
چکیده
In recent years, nanoparticles (NPs) and related applications have become an intensive area of research, especially in the biotechnological and biomedical fields, with magnetic NPs being one of the promising tools for tumor treatment and as MRI-contrast enhancers. Several internalization and cytotoxicity studies have been performed, but there are still many unanswered questions concerning NP interactions with cells and NP stability. In this study, we prepared functionalized magnetic NPs coated with polyacrylic acid, which were stable in physiological conditions and which were also nontoxic short-term. Using fluorescence, scanning, and transmission electron microscopy, we were able to observe and determine the internalization pathways of polyacrylic acid-coated NPs in Chinese hamster ovary cells. With scanning electron microscopy we captured what might be the first step of NPs internalization - an endocytic vesicle in the process of formation enclosing NPs bound to the membrane. With fluorescence microscopy we observed that NP aggregates were rapidly internalized, in a time-dependent manner, via macropinocytosis and clathrin-mediated endocytosis. Inside the cytoplasm, aggregated NPs were found enclosed in acidified vesicles accumulated in the perinuclear region 1 hour after exposure, where they stayed for up to 24 hours. High intracellular loading of NPs in the Chinese hamster ovary cells was obtained after 24 hours, with no observable toxic effects. Thus polyacrylic acid-coated NPs have potential for use in biotechnological and biomedical applications.
منابع مشابه
Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles
Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applicat...
متن کاملPhysiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin
Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein - namely the ferritin - in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close ...
متن کاملControl of the Size of Cobalt Ferrite Nanoparticles : Synthesis and Properties
The preparation of a fluid of cobalt ferrite particles having a size varying from 2 to 5nm is described. This bas been achieved by using functionalized surfactants. The size of cobalt femte particles decreases when the total reactant concentration decreases. The magnetic properties are described with magnetization curves and "Fe mossbauer spectroscopy. It is demonstrated that these particles ar...
متن کاملSynthesis and Surfactant Effect on Structural Analysis of Nickel Doped Cobalt Ferrite Nanoparticles by C-precipitation Method
Nanoparticles of nickel substituted cobalt ferrite (Nix Co1-xFe2 O4 : 0£ X£ 1) have been synthesized by co-precipitation method. Triton x-100 and oleic acid as surfactants were used. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak were found 17 and 21nm. Their morphology structure have been determined by scanning electron microscop...
متن کاملSynthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles
The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 6...
متن کامل